The Hyper-Wiener Index of One-pentagonal Carbon Nanocone
نویسندگان
چکیده
منابع مشابه
The Edge Szeged Index of One–Pentagonal Carbon Nanocones
The edge Szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph G, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. In this paper, the edge Szeged index of one-pentagonal carbon nanocone CNC5[n] is computed for the first ...
متن کاملthe edge szeged index of one–pentagonal carbon nanocones
the edge szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph g, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. in this paper, the edge szeged index of one-pentagonal carbon nanocone cnc5[n] is computed for the first ...
متن کاملThe hyper-Wiener index of graph operations
Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملThe Hyper-Wiener Polynomial of Graphs
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Nanoscience
سال: 2013
ISSN: 1573-4137
DOI: 10.2174/15734137113090990061