The Hyper-Wiener Index of One-pentagonal Carbon Nanocone

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Edge Szeged Index of One–Pentagonal Carbon Nanocones

The edge Szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph G, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. In this paper, the edge Szeged index of one-pentagonal carbon nanocone CNC5[n] is computed for the first ...

متن کامل

the edge szeged index of one–pentagonal carbon nanocones

the edge szeged index is a new molecular structure descriptor equal to the sum of products mu(e)mv(e) over all edges e = uv of the molecular graph g, where mu(e) is the number of edges which its distance to vertex u is smaller than the distance to vertex v, and nv(e) is defined analogously. in this paper, the edge szeged index of one-pentagonal carbon nanocone cnc5[n] is computed for the first ...

متن کامل

The hyper-Wiener index of graph operations

Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

The Hyper-Wiener Polynomial of Graphs

The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Current Nanoscience

سال: 2013

ISSN: 1573-4137

DOI: 10.2174/15734137113090990061